استراتيجيات التداول الخوارزمية المشتركة


تحقيق استراتيجيات التداول ألغوريتمي.


استراتيجيات التداول الكمية للربح خلال الارتفاع & # 038؛ هبوط الأسواق.


تحقيق تنوع في الحافظة الخاصة بك.


مثلك أبدا ممكنا.


توفر استراتيجياتنا التداولية الخوارزمية التنويع للمحفظة الخاصة بك عن طريق تداول الحمار المتعددة مثل مؤشر S 500، ومؤشر داكس، ومؤشر التقلب، من خلال استخدام تداول العقود الآجلة، أو صناديق تداول العملات المتداولة جدا. ومن خلال تطبيق استراتيجيات الاتجاه المتاجرة والاستراتيجيات المضادة للاتجاه المعاكس والاستراتيجيات القائمة على دورة المدى، فإننا نسعى إلى توفير عملية تداول آلية ومؤتمتة للغاية قادرة على توفير عوائد متسقة لعملائنا. *


ونحن نقدم استراتيجيات التداول خوارزمية متعددة حيث يمكن اتباعها جميع الاستراتيجيات حسابي يدويا عن طريق تلقي البريد الإلكتروني وتنبيهات النص سمز، أو يمكن أن يكون 100٪ حر اليدين تداولها تلقائيا في حساب الوساطة الخاص بك. الأمر متروك لكم ويمكنك حتى تشغيل / إيقاف التداول الآلي في أي وقت لذلك كنت دائما في السيطرة على مصيرك.


استراتيجيات التداول الخوارزمية لدينا:


1. التحولات في الزخم على المدى القصير بين ظروف الشراء في ذروة الشراء و ذروة البيع، والتي يتم تداولها باستخدام مراكز طويلة وقصيرة مما يسمح، والأرباح المحتملة في أي اتجاه السوق.


2. الاتجاه التالي يستفيد من تحركات أسعار متعددة أشهر ممتدة في أي اتجاه صعودا أو هبوطا.


3. التداول الدوري يسمح الأرباح المحتملة خلال مجموعة ملزمة السوق جانبية. بعض من أكبر المكاسب واجهت خلال ظروف السوق متقلبة مع هذه الاستراتيجية. *


منتجاتنا - ألغوترادس هي خدمة نظام التداول الكل في واحد الذي يجمع بين أنواع الأكثر فعالية وهامة من التحليل المذكورة أعلاه إلى أنظمة التداول حسابي فريدة من نوعها لخلق نظام ديناميكي وقوي.


ألغوترادس استراتيجيات التداول الكمي تنويع محفظتك بطريقتين. (1) أنها تتداول أكبر مؤشرات الأسهم للتنويع الكلي مع جميع قطاعات السوق، (2) توظف ثلاثة استراتيجيات تحليل خوارزمية فريدة من نوعها. توفر استراتيجيات التداول الثلاث فريدة من نوعها الاستقرار إضافية نتيجة لنهج متعددة والمواقف حقيقة تختلف في الطول والحجم.


القيمة المضافة مع استراتيجيات التداول حسابي.


تسعى ألغوترادس إلى إضافة قيمة من خلال تعظيم كفاءة العائد، قياس إحصائي للأداء. نحن نضيف قيمة من خلال أداء متسق، بغض النظر عن حالة السوق الحالية أو الاتجاه ** يمكن لدينا قواعد إدارة المخاطر المعقدة والنظام توفر تقلبات منخفضة محفظة وانخفاض علاقة عوائد سوق الأسهم.


ويمكن الآن ركوب السفينة الدوارة سوق الأسهم ومشاهدة محفظتك سقوط مع السوق المالية يمكن تجنبها من خلال استخدام استراتيجيات التداول حسابي. ^


القيمة التي نقدمها لمستثمرينا أبحاثا متطورة ومواقف مدارة بشكل جيد ومستويات عالية من الشفافية، وكلها مصممة لمساعدة المستثمرين في تحقيق أهدافهم المالية عاجلا. ***


ما هي استراتيجيات التداول الخوارزمية لدينا ليست كذلك.


استراتيجيات التداول الخوارزمية لدينا ليست محايدة السوق، وهذا يعني أننا لا تحوط موقفنا لأننا نسعى للاستفادة من تقلبات سوق الأسهم. بدلا من ذلك، لدينا الحرف اتجاهي وعادة في اتجاه الاتجاه الرئيسي، ما إذا كان السعر يتحرك صعودا وهبوطا أو جانبية.


الاستثمار مع ألغوترادس ينطوي على مخاطر الخسارة كما تفعل جميع الاستثمارات.


ومع ذلك، نحن واعية جدا واعية لأهمية السيطرة على المخاطر، ونعتقد أن التداول باستخدام استراتيجيات التداول خوارزمية لدينا والنهج الآلي إدارة المخاطر بنجاح في حين تسعى عوائد جذابة. ***


توليد نمو ثابت على المدى الطويل.


لدينا استراتيجيات التداول حسابي - وصف & # 038؛ فلسفة.


ونحن نعتقد أن نظام التداول ألغوريترادس خوارزمية هو كل شيء تاجر والمستثمر يحتاج إلى توليد نمو ثابت على المدى الطويل. *


لدينا أدوات فريدة من نوعها الملكية وخوارزميات التداول تسمح لنا للاستفادة من الأسواق المالية بغض النظر عن اتجاه السوق. AlgoTrades & # 8217؛ فلاتر متقدمة مراقبة السوق على أساس القراد حسب القار تقييم كل دخول، الربح / الخسارة، أو وقف مستوى التنسيب في الوقت الحقيقي، لذلك لم يكن لديك ل.


ما هو المتداول:


الأنظمة التي تتداول في العقود الآجلة الصغيرة إس، العقود الآجلة داكس، مع كل من المراكز الطويلة والقصيرة. وتداول بعض الأنظمة باستخدام الصناديق المتداولة في البورصة مع التركيز على تداول المؤشرات والقطاعات ومؤشر التقلبات. لدينا أيضا أنظمة تداول الأسهم لأولئك كيف تفضل تداول الأسهم النشطة. تختلف الصفقات في الطول اعتمادا على الاستراتيجية. وتشكل الأنظمة مجموعة من الأيام تتداول لتداول الاتجاه الطويل لعدة أسابيع.


AlgoTrades & # 8217؛ الأولوية الأولى بعد تنفيذ الموقف هي تعظيم الأرباح وتقليل المخاطر.


إدارة الموقف المستخدمة.


كل من أنظمتنا التجارة إما عقد 1 العقود الآجلة أو قيمة حجم موقف ثابت إذا كان تداول الأسهم أو إتف & # 8217؛ ق. كما أن بعض الأنظمة مثل تداول العقود الآجلة أو أنظمة الأسهم طويلة / قصيرة تتطلب حساب هامش، في حين أن نظام إتف طويل فقط (الأموال العادية والعكسية) يمكن استخدام أي حساب تداول الأسهم العادية.


إن أنظمتنا كلها قادرة على القياس، وهذا يعني إذا كان النظام يتطلب 10000 $ حساب الحجم وكان لديك حساب 20K $ كنت مجرد تعيين مقياس النظام إلى 200٪. سيضمن ذلك أنك تتداول أحجام المواضع بشكل صحيح لحسابك.


حجم الحساب المطلوب.


الحد الأدنى حساب التداول المطلوبة للحرف ليتم تنفيذها مع أصغر نظام لدينا هو 10،000 $ الحساب. إن أنظمتنا كلها قادرة على القياس، وهذا يعني إذا كان النظام ينص على أنه يتطلب 10،000 $ حساب حجم وكان لديك حساب 20،000 $ كنت مجرد تعيين مقياس النظام إلى 200٪.


من ناحية أخرى إذا كان النظام يقول انها تتطلب $ 25،000 وكان لديك فقط 12،500 $ يمكنك تعيين مقياس النظام لتداول 50٪ من حجم موقف النظام. سيضمن ذلك أنك تتداول أحجام المواضع بشكل صحيح لحسابك.


تعلم عن استراتيجيات التداول في المجال الرياضي.


تستخدم لتداول حسابك.


هام & # 8211؛ استراتيجيات التداول التجاري:


في كل عام سوق الأسهم لديها بقعة حلوة حيث سيتم إنشاء جزء كبير من المكاسب في غضون بضعة أشهر لذلك الالتزام لنظام التداول حسابي مهم للنجاح على المدى الطويل.


إستراتيجية التداول ألغوريتمي.


وقد تم تطوير نظامنا ألغوترادس وتداولها من قبل المهنيين الذين يرغبون في تبادل نظامهم، والعاطفة من الأسواق، ونمط الحياة مع مجموعة مختارة من التجار والمستثمرين لدينا.


يمتلك فريق ألجوترادس مستوى خبرة مجتمعة يبلغ 77 عاما في الأسواق. وتتدفق مواردنا بعيدة وواسعة تغطي التداول اليومي، وتداول الأرجوحة، وتداول العقود الآجلة على مدار 24 ساعة، والأسهم، إتف & # 8217؛ ق، واستراتيجيات التداول التداول خوارزمية. وقد شاهدت لدينا مجموعة صغيرة ونخبة وفعلت كل شيء!


ونحن فخورون لجعل ألغوترادس المتاحة للمستثمرين الأفراد للمساعدة في تكافؤ الفرص مع الايجابيات وصناديق التحوط وشركات الأسهم الخاصة في وول ستريت.


تستخدم استراتيجيات التداول الخوارزمية لدينا عدة نقاط بيانات لتشغيل عملية صنع القرار والتداول. استخدام الدورات، ونسب حجم، والاتجاهات، وتقلب، معنويات السوق، والتعرف على الأنماط، يضع احتمال لصالحنا لكسب المال.


إستراتيجيات التداول الهامة في حساب الاستراتيجيات & # 038؛ بنفت للتداول في العقود الآجلة: عندما يقترب العقد الآجل من انتهاء صلاحيته، سيقوم نظامنا تلقائيا بإغلاق العقد الأمامي أو القريب وإعادة تأسيس الموقع في الشهر الجديد أو العقد القريب. لا يلزم اتخاذ أي إجراء من جانبك. انها أيدي حقيقية استراتيجية التداول الآلي مجانا.


الأنواع الشائعة من خوارزميات التداول.


هذا هو لمحة موجزة عن الأنواع الشائعة من خوارزميات التمويل الكمي التي يتم تداولها اليوم. وبطبيعة الحال، هذه ليست سوى نظرة عامة، وليس شامل! اسمحوا لي أن أعرف إذا كنت تعتقد أن هناك أنواع أخرى من الغو يجب أن تغطي.


ويفترض المستثمرون العائدون أن سعر السهم سيعود على مر الزمن إلى متوسط ​​السعر على المدى الطويل. وهي تستخدم تحليل أسعار الأسهم لتحديد حدود التداول ذات الدلالة الإحصائية. إذا كان السهم يتداول بشكل كبير فوق المتوسط ​​المتحرك، فسوف يقصره. من ناحية أخرى، إذا كان السهم يتجه بشكل كبير دون المتوسط ​​المتحرك، فسوف يشتريه. انظر مثال استراتيجية التقييم - صفقة التسوق.


ويخلق المستثمرون استراتيجيات تعتمد على وقت السنة. ومن الموثقة جيدا أن الأسواق تميل إلى تحقيق عوائد أفضل في نهاية العام وخلال أشهر الصيف، في حين أن شهر سبتمبر عادة ما يكون شهرا مع عوائد أقل. من أجل تجنب خسارة رأس المال، يختار بعض المستثمرين بيع مراكزهم مع خسائر في نهاية ديسمبر للاستفادة من التساهل الضريبي. وفي كانون الثاني / يناير، عاد المستثمرون في انتصار وشراء أسهم صغيرة وقيمة، مما رفع أسعارهم. كما تتجه أسعار الأسهم بشكل مختلف حول العطلات وفترات إغلاق الربع. استراتيجية بسيطة هي شراء وعقد الأسهم (سبي) من أكتوبر - أبريل ثم تناوب لشراء وعقد السندات (بسف) من مايو - سبتمبر. انظر المثال استراتيجية المشاعر - شراء الشائعات، وبيع الأخبار.


تحليل المشاعر التداول مستمد من علم النفس الحشد، حيث البقاء المستثمرين ما يصل إلى التاريخ على الأخبار الأخيرة وشراء الأسهم توقع رد فعل الحشد. وهي تحاول التعرف على التغيرات في الأسعار على المدى القصير وجني الفوائد السريعة. يمكن للمستثمرين مراقبة المصادر بما في ذلك اتجاهات بحث غوغل، ووسائل الإعلام، والمدونات / المنتديات، ووظائف تويتر. انظر مثال الاستراتيجية الاستثمار الأساسي.


هذا هو وسيلة لتقييم القيمة الحقيقية الحقيقية للسهم من خلال فحص العوامل على المستوى الكلي مثل المؤشرات الاقتصادية والصناعة ومقارنات القطاع، وتحليل البيانات المالية للشركة. فالحسابات المستمدة من البيانات الحقيقية تحاول وضع نموذج للقيمة الحقيقية للسهم، الذي يقارن بعد ذلك بسعر السوق للسهم - وهو ما يقود قرار الشراء أو البيع. وتشمل نقاط البيانات النموذجية للتحليل الأساسي إيرادات الشركات، والأرباح، والنمو المستقبلي، والعائد على حقوق المساهمين، وهوامش الربح. الاستثمار التقني.


تدرس هذه الطريقة نشاط السوق السابق للتغيرات في سعر السهم وحجمه، معتقدة بأن الأداء التاريخي يدل على النتائج المستقبلية. يستخدم المستثمرون الرسوم البيانية والإحصاءات والأدوات الأخرى لاكتشاف الأنماط في البيانات للتنبؤ بتحركات الأسعار المستقبلية. هذا النمط من الاستثمار لا يحلل قيمة إنتيرسيك للسهم، وإنما حركة المستقبل للأمن. لإضافة تحليل تقني إلى رمز كوانتوبيان الخاص بك، راجع مكتبة المصدر المفتوح تا-ليب.


يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا لبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان.


وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة موصوفة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.


التعليقات مغلقة.


يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا للبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الخدمات الاستشارية الاستثمارية من قبل كوانتوبيان.


وبالإضافة إلى ذلك، لا تقدم المادة أي رأي فيما يتعلق بملاءمة أي ضمان أو استثمار محدد. لا ینبغي اعتبار أي معلومات واردة في ھذه الوثیقة بمثابة اقتراح للانخراط في أي مسار عمل یتعلق بالاستثمار أو الامتناع عنھ حیث لا یقوم أي من کوانتوبيان أو أي من الشرکات التابعة لھ بتقدیم المشورة الاستثماریة أو العمل کمستشار لأي خطة أو کیان خاضع ل وقانون تأمين دخل التقاعد للموظفين لعام 1974، بصيغته المعدلة، أو حساب التقاعد الفردي أو المعاش التقاعدي الفردي، أو تقديم المشورة بصفة الأمانة فيما يتعلق بالمواد المعروضة في هذه الوثيقة. إذا كنت مستقلا فرديا أو مستثمرا آخر، فاتصل بمستشارك المالي أو أي جهة مالية أخرى لا علاقة لها بكوانتوبيان حول ما إذا كانت أي فكرة استثمار أو إستراتيجية أو منتج أو خدمة معينة مذكورة هنا قد تكون مناسبة لظروفك. وتشمل جميع الاستثمارات مخاطر، بما في ذلك خسارة أصل الدين. لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية.


يتم توفير المواد على هذا الموقع لأغراض إعلامية فقط ولا تشكل عرضا لبيع أو طلب شراء أو توصية أو تأييد لأي أمن أو استراتيجية، كما أنها لا تشكل عرضا لتقديم الاستشارات الاستثمارية أو غيرها من الخدمات من قبل Quantopian. وبالإضافة إلى ذلك، فإن محتوى الموقع لا يقدم أي رأي فيما يتعلق بملاءمة أي ضمان أو أي استثمار محدد.


لا تقدم كوانتوبيان أي ضمانات بشأن دقة أو اكتمال الآراء المعرب عنها في الموقع. وتخضع اآلراء للتغيير، وقد تصبح غير موثوقة ألسباب مختلفة، بما في ذلك التغيرات في ظروف السوق أو الظروف االقتصادية. وتشمل جميع الاستثمارات مخاطر - بما في ذلك خسارة أصل الدين. يجب عليك التشاور مع أحد المتخصصين في الاستثمار قبل اتخاذ أي قرارات استثمارية.


QuantStart.


الانضمام إلى كوانتكاديمي بوابة العضوية الخاصة التي تلبي احتياجات التجزئة المتزايد بسرعة المجتمع تاجر الكمي. سوف تجد مجموعة من ذوي الخبرة مثل التفكير من التجار الكميون على استعداد للرد على أسئلة التداول الكمي الأكثر إلحاحا.


تحقق من بلدي يبوك على التداول الكمي حيث أنا يعلمك كيفية بناء مربحة استراتيجيات التداول المنهجي مع أدوات بايثون، من الصفر.


نلقي نظرة على بلدي الكتاب الاليكتروني الجديد على استراتيجيات التداول المتقدمة باستخدام تحليل سلسلة زمنية، والتعلم الآلي والإحصاءات بايزي، مع بيثون و R.


بقلم مايكل هالز مور في 19 أبريل 2018.


في هذه المقالة أريد أن أعرض لكم الطرق التي أنا نفسي تحديد استراتيجيات التداول خوارزمية مربحة. هدفنا اليوم هو أن نفهم بالتفصيل كيفية العثور على وتقييم واختيار هذه النظم. سأشرح كيفية تحديد الاستراتيجيات بقدر ما يتعلق بالأفضلية الشخصية، كما هو الحال بالنسبة لأداء الاستراتيجية، وكيفية تحديد نوع وكمية البيانات التاريخية للاختبار، وكيفية تقييم تقييم التداول بشكل متعمد، وأخيرا كيفية المضي قدما نحو مرحلة باكتستينغ و تنفيذ الاستراتيجية.


تحديد التفضيلات الشخصية الخاصة بك للتداول.


من أجل أن يكون تاجر ناجح - إما تناسبيا أو خوارزمية - من الضروري أن تسأل نفسك بعض الأسئلة الصادقة. التداول يوفر لك القدرة على فقدان المال بمعدل ينذر بالخطر، لذلك فمن الضروري أن "تعرف نفسك" بقدر ما هو ضروري لفهم الاستراتيجية التي اخترتها.


وأود أن أقول أن أهم اعتبار في التداول هو على بينة من شخصيتك الخاصة. التداول، والتجارة الخوارزمية على وجه الخصوص، يتطلب درجة كبيرة من الانضباط والصبر والانفصال العاطفي. منذ كنت تدع خوارزمية تنفيذ التداول الخاص بك بالنسبة لك، فمن الضروري أن يتم حل عدم التدخل في الاستراتيجية عندما يتم تنفيذها. وقد يكون ذلك صعبا للغاية، خاصة في فترات الانسحاب الموسع. ومع ذلك، العديد من الاستراتيجيات التي ثبت أن تكون مربحة للغاية في باكتست يمكن أن تدمر من خلال تدخل بسيط. فهم أنه إذا كنت ترغب في دخول عالم التداول حسابي سوف يتم اختبار عاطفيا وأنه من أجل أن تكون ناجحة، فمن الضروري العمل من خلال هذه الصعوبات!


الاعتبار التالي هو واحد من الوقت. هل لديك وظيفة بدوام كامل؟ هل تعمل بدوام جزئي؟ هل تعمل من المنزل أو لديك تنقلات طويلة كل يوم؟ هذه الأسئلة سوف تساعد في تحديد وتيرة الاستراتيجية التي يجب أن تسعى. بالنسبة لأولئك منكم في العمل بدوام كامل، قد لا تكون استراتيجية العقود الآجلة لحظية مناسبة (على الأقل حتى يتم مؤتمتة بالكامل!). كما أن قيود وقتك تملي منهجية الاستراتيجية. إذا كانت إستراتيجيتك يتم تداولها بشكل متكرر وتعتمد على خلاصات أخبار باهظة الثمن (مثل محطة بلومبرغ) سيكون من الواضح أن تكون واقعية عن قدرتك على تشغيل هذا بنجاح أثناء وجودك في المكتب! بالنسبة لأولئك منكم مع الكثير من الوقت، أو المهارات لأتمتة الاستراتيجية الخاصة بك، قد ترغب في النظر في استراتيجية التداول عالية التردد أكثر تقنية (هفت).


إيماني هو أنه من الضروري إجراء البحوث المستمرة في استراتيجيات التداول الخاصة بك للحفاظ على محفظة مربحة باستمرار. عدد قليل من الاستراتيجيات البقاء "تحت الرادار" إلى الأبد. وبالتالي فإن جزءا كبيرا من الوقت المخصص للتداول سيكون في إجراء البحوث الجارية. اسأل نفسك عما إذا كنت مستعدا للقيام بذلك، لأنه يمكن أن يكون الفرق بين الربحية القوية أو الانخفاض البطيء نحو الخسائر.


تحتاج أيضا إلى النظر في رأس المال الخاص بك التداول. الحد الأدنى المثالي المقبول عموما للاستراتيجية الكمية هو 50،000 دولار أمريكي (حوالي 35،000 جنيه استرليني بالنسبة لنا في المملكة المتحدة). إذا كنت قد بدأت من جديد، سأبدأ بمبلغ أكبر، ربما أقرب 100،000 دولار أمريكي (حوالي 70،000 £). وذلك لأن تكاليف المعاملات يمكن أن تكون مكلفة للغاية بالنسبة لاستراتيجيات متوسطة إلى عالية التردد، وأنه من الضروري أن يكون رأس المال كاف لاستيعابها في أوقات السحب. إذا كنت تفكر في البدء مع أقل من 10،000 دولار أمريكي، سوف تحتاج إلى تقييد نفسك لاستراتيجيات التردد المنخفض، والتداول في واحد أو اثنين من الأصول، وتكاليف المعاملات سوف تأكل بسرعة في عوائد الخاص بك. وسطاء التفاعلية، والتي تعد واحدة من الوسطاء ودية لأولئك الذين لديهم مهارات البرمجة، بسبب أبي، لديها حساب الحد الأدنى التجزئة 10،000 دولار أمريكي.


مهارة البرمجة هي عامل مهم في خلق استراتيجية التداول الآلي الخوارزمية. كونك على دراية بلغة البرمجة مثل C ++، جافا، C #، بيثون أو R سوف تمكنك من إنشاء نهاية إلى نهاية تخزين البيانات، باكتست المحرك ونظام التنفيذ نفسك. هذا له عدد من المزايا، رئيسها هو القدرة على أن تكون على علم تام بجميع جوانب البنية التحتية التجارية. كما يسمح لك لاستكشاف استراتيجيات تردد أعلى كما سوف تكون في السيطرة الكاملة على "كومة التكنولوجيا". في حين أن هذا يعني أنه يمكنك اختبار البرمجيات الخاصة بك والقضاء على البق، وهذا يعني أيضا المزيد من الوقت الذي يقضيه ترميز البنية التحتية وأقل على تنفيذ الاستراتيجيات، على الأقل في الجزء السابق من حياتك التجارية ألغو. قد تجد أن لديك تجارة مريحة في إكسيل أو ماتلاب ويمكن الاستعانة بمصادر خارجية لتطوير المكونات الأخرى. إلا أنني لا أنصح هذا، وخاصة بالنسبة لأولئك المتداولين في وتيرة عالية.


تحتاج إلى أن تسأل نفسك ما كنت آمل تحقيقه من خلال التداول حسابي. هل ترغب في الحصول على دخل منتظم، حيث كنت تأمل في الحصول على الأرباح من حساب التداول الخاص بك؟ أو هل أنت مهتم بتحقيق مكاسب رأسمالية طويلة الأجل ويمكنها أن تتداول دون الحاجة إلى سحب الأموال؟ سوف الاعتماد على الإملاء تملي وتيرة الاستراتيجية الخاصة بك. وسيتطلب سحب أكثر انتظاما للدخل استراتیجیة تداول ذات تردد أکبر مع تقلب أقل (أي نسبة شارب أعلی). يمكن للتجار على المدى الطويل تحمل تردد تداول أكثر رصانة.


وأخيرا، لا تتلاشى من فكرة أن تصبح غنية للغاية في مساحة قصيرة من الزمن! ألغو التداول ليس مخطط سريع الغني - إذا كان أي شيء يمكن أن يكون مخططا فقيرة وسريعة. فإنه يأخذ الانضباط الكبير، والبحوث، والاجتهاد والصبر لتكون ناجحة في التداول الخوارزمية. قد يستغرق الأمر شهورا، إن لم يكن سنوات، لتوليد أرباح متسقة.


مصادر الأفكار التداول خوارزمية.


وعلى الرغم من التصورات المشتركة على العكس من ذلك، فمن الواضح تماما في الواقع تحديد استراتيجيات تجارية مربحة في الملك العام. لم تكن أبدا الأفكار التجارية متاحة بسهولة أكثر مما هي عليه اليوم. توفر مجلات التمويل الأكاديمي وخوادم ما قبل الطباعة ومدونات التداول ومنتديات التداول ومجلات التداول الأسبوعية والنصوص المتخصصة آلاف استراتيجيات التداول التي تستند إليها أفكارك.


هدفنا كباحثين التداول الكمي هو إنشاء خط أنابيب استراتيجية من شأنها أن توفر لنا مجموعة من الأفكار التجارية الجارية. من الناحية المثالية نحن نريد أن نخلق نهجا منهجيا في تحديد وتقييم وتنفيذ الاستراتيجيات التي نأتي عبر. وأهداف خط الأنابيب هي توليد كمية متسقة من الأفكار الجديدة وتزويدنا بإطار لرفض غالبية هذه الأفكار مع الحد الأدنى من النظر العاطفي.


يجب أن نكون حذرين للغاية لعدم السماح للتحيزات المعرفية تؤثر على منهجية صنع القرار لدينا. ويمكن أن يكون ذلك بسيطا مثل تفضيل فئة أصول واحدة على فئة أخرى (الذهب والمعادن الثمينة الأخرى تتبادر إلى الذهن) لأنها تعتبر أكثر غرابة. يجب أن يكون هدفنا دائما إيجاد استراتيجيات مربحة باستمرار، مع توقع إيجابي. يجب أن يستند اختيار فئة األصول إلى اعتبارات أخرى، مثل القيود على رأس المال التجاري، ورسوم الوساطة، وقدرات الرافعة المالية.


إذا كنت غير مألوفة تماما مع مفهوم استراتيجية التداول ثم أول مكان للنظر هو مع الكتب المدرسية المعمول بها. النصوص الكلاسيكية توفر مجموعة واسعة من أبسط، وأكثر وضوحا الأفكار، والتي للتعرف على نفسك مع التداول الكمي. هنا هو التحديد الذي أوصي لأولئك الذين هم جديدة إلى التداول الكمي، والتي تصبح تدريجيا أكثر تطورا وأنت تعمل من خلال القائمة:


للحصول على قائمة أطول من الكتب التجارية الكمية، يرجى زيارة قائمة القراءة كوانتستارت.


والمكان التالي للعثور على استراتيجيات أكثر تطورا هو منتديات التداول والمدونات التجارية. ومع ذلك، ملاحظة الحذر: العديد من بلوق التداول تعتمد على مفهوم التحليل الفني. يتضمن التحليل الفني استخدام المؤشرات الأساسية وعلم النفس السلوكي لتحديد الاتجاهات أو أنماط الانعكاس في أسعار الأصول.


على الرغم من كونها تحظى بشعبية كبيرة في مساحة التداول العامة، يعتبر التحليل الفني غير فعال إلى حد ما في مجتمع التمويل الكمي. وقد اقترح البعض أنه ليس أفضل من قراءة برجك أو دراسة أوراق الشاي من حيث القوة التنبؤية لها! في الواقع هناك أفراد ناجحين يستفيدون من التحليل الفني. ومع ذلك، كما يتأخر مع مجموعة أدوات رياضية وإحصائية أكثر تطورا تحت تصرفنا، يمكننا بسهولة تقييم فعالية هذه الاستراتيجيات "تا" القائمة على أساس واتخاذ القرارات القائمة على البيانات بدلا من قاعدة لنا على الاعتبارات العاطفية أو الأفكار المسبقة.


وهنا لائحة من بلوق التداول المحترمة جيدا والمنتديات:


مرة واحدة كان لديك بعض الخبرة في تقييم استراتيجيات أبسط، فقد حان الوقت للنظر في العروض الأكاديمية أكثر تطورا. وسيكون من الصعب الوصول إلى بعض المجلات الأكاديمية، دون اشتراكات عالية أو تكاليف لمرة واحدة. إذا كنت عضوا أو خريجا في الجامعة، يجب أن تكون قادرا على الوصول إلى بعض هذه المجلات المالية. خلاف ذلك، يمكنك أن تبحث في خوادم ما قبل الطباعة، والتي هي مستودعات الإنترنت من مسودات في وقت متأخر من الأوراق الأكاديمية التي تخضع لمراجعة الأقران. وبما أننا مهتمون فقط في الاستراتيجيات التي يمكننا أن نكرر بنجاح، باكتست والحصول على الربحية، استعراض الأقران هو أقل أهمية بالنسبة لنا.


إن الجانب السلبي الكبير للاستراتيجيات الأكاديمية هو أنها غالبا ما تكون قديمة، وتتطلب بيانات تاريخية غامضة ومكلفة، وتداول في فئات الأصول غير السائلة، أو لا تأخذ في الاعتبار الرسوم أو الانزلاق أو الانتشار. كما يمكن أن يكون من غير الواضح ما إذا كان سيتم تنفيذ استراتيجية التداول مع أوامر السوق، أوامر الحد أو ما إذا كان يحتوي على وقف الخسائر وما إلى ذلك وبالتالي فمن الضروري للغاية لتكرار استراتيجية نفسك على أفضل وجه ممكن، باكتست ذلك وإضافة في معاملة واقعية التكاليف التي تتضمن العديد من جوانب فئات الأصول التي ترغب في التداول فيها.


في ما يلي قائمة بخوادم ما قبل الطباعة والمجلات المالية الأكثر شعبية والتي يمكنك من خلالها الحصول على أفكار من:


ماذا عن تشكيل الاستراتيجيات الكمية الخاصة بك؟ ويتطلب ذلك عموما (على سبيل المثال لا الحصر) الخبرة في واحدة أو أكثر من الفئات التالية:


سوق المجهرية - لاستراتيجيات تردد أعلى على وجه الخصوص، يمكن للمرء أن الاستفادة من المجهرية السوق، أي فهم ديناميات كتاب النظام من أجل توليد الربحية. وستكون للأسواق المختلفة قيود تكنولوجية مختلفة، ولوائح، ومشاركين في السوق، ومعوقات كلها مفتوحة للاستغلال عن طريق استراتيجيات محددة. وهذه منطقة متطورة جدا وسيجد ممارسو البيع بالتجزئة صعوبة في المنافسة في هذا المجال، خاصة وأن المنافسة تشمل صناديق تحوط كمية كبيرة ذات رأس مال جيد ذات قدرات تكنولوجية قوية. هيكل الصندوق - إن صناديق الاستثمار المجمعة، مثل صناديق المعاشات التقاعدية وشراكات الاستثمار الخاص (صناديق التحوط) ومستشاري تجارة السلع وصناديق الاستثمار المشتركة مقيدة بسبب التنظيمات الثقيلة واحتياطيات رأس المال الكبيرة. وهكذا يمكن استغلال بعض السلوكيات المتسقة مع أولئك الذين هم أكثر ذكاء. فعلى سبيل المثال، تخضع الأموال الكبيرة للقيود المفروضة على القدرات بسبب حجمها. وبالتالي إذا كانوا بحاجة إلى تفريغ سريع (بيع) كمية من الأوراق المالية، سيكون لديهم لتدوير ذلك من أجل تجنب "تحريك السوق". خوارزميات متطورة يمكن الاستفادة من هذا، وغيرها من الخصوصيات، في عملية عامة تعرف باسم هيكل صندوق التحكيم. تعلم الآلة / الذكاء الاصطناعي - أصبحت خوارزميات التعلم الآلي أكثر انتشارا في السنوات الأخيرة في الأسواق المالية. وقد استخدمت كل من المصنفات (مثل نايف بايز وآخرون) ومطابقة الوظائف غير الخطية (الشبكات العصبية) وإجراءات التحسين (الخوارزميات الجينية) للتنبؤ بمسارات الأصول أو تحسين استراتيجيات التداول. إذا كان لديك خلفية في هذا المجال قد يكون لديك بعض نظرة ثاقبة كيف يمكن تطبيق خوارزميات معينة في أسواق معينة.


وهناك بالطبع مجالات كثيرة أخرى للتحقيق فيها. سنناقش كيفية التوصل إلى استراتيجيات مخصصة بالتفصيل في مقال لاحق.


من خلال الاستمرار في مراقبة هذه المصادر على أساس أسبوعي، أو حتى يومي، كنت تضع نفسك للحصول على قائمة متسقة من الاستراتيجيات من مجموعة متنوعة من المصادر. والخطوة التالية هي تحديد كيفية رفض مجموعة فرعية كبيرة من هذه الاستراتيجيات من أجل التقليل إلى أدنى حد من إهدار وقتك واسترجاع الموارد على الاستراتيجيات التي من المرجح أن تكون غير مربحة.


تقييم استراتيجيات التداول.


أول ما يمكن اعتباره أكثر وضوحا هو ما إذا كنت تفهم الاستراتيجية فعلا. هل ستكون قادرا على شرح الاستراتيجية بشكل موجز أم أنها تتطلب سلسلة من المحاذير وقوائم المعلمات التي لا نهاية لها؟ وبالإضافة إلى ذلك، هل لدى الاستراتيجية أساس جيد ومتين في الواقع؟ على سبيل المثال، هل يمكن أن تشير إلى بعض الأسباب المنطقية السلوكية أو قيود هيكل التمويل التي قد تسبب النمط (النماذج) التي تحاول استغلالها؟ ھل سیستمر ھذا القیود حتی تغییر النظام، مثل تعطل بیئي تنظیمي دراماتیکي؟ هل تعتمد الاستراتيجية على قواعد إحصائية أو رياضية معقدة؟ هل تنطبق على أي سلسلة زمنية مالية أو أنها محددة لفئة الأصول التي يدعى أنها مربحة عليها؟ يجب أن تكون دائما التفكير في هذه العوامل عند تقييم أساليب التداول الجديدة، وإلا قد تضيع قدرا كبيرا من الوقت في محاولة ل باكتست وتحسين الاستراتيجيات غير المربحة.


مرة واحدة كنت قد قررت أن تفهم المبادئ الأساسية للاستراتيجية تحتاج إلى أن تقرر ما إذا كان يتناسب مع الشخصية الشخصية المذكورة أعلاه. هذا ليس كما غامضة النظر كما يبدو! وستختلف الاستراتيجيات اختلافا كبيرا في خصائص أدائها. هناك بعض أنواع الشخصية التي يمكن التعامل مع فترات أكثر أهمية من الانسحاب، أو على استعداد لقبول مخاطر أكبر لعودة أكبر. على الرغم من حقيقة أننا، كوانتس، في محاولة والقضاء على أكبر قدر من التحيز المعرفي قدر الإمكان، وينبغي أن تكون قادرة على تقييم استراتيجية بالتناوب، والتحيزات سوف تزحف دائما في. وبالتالي نحن بحاجة إلى وسائل عاطفية متسقة من خلالها لتقييم أداء الاستراتيجيات . وفيما يلي قائمة بالمعايير التي أحكم فيها على استراتيجية جديدة محتملة من خلال:


المنهجية - هل يستند الزخم الاستراتيجى إلى الاستراتيجى، أو الاتجاه المتوسط، أو الاتجاه المحايد للسوق؟ ھل تعتمد الاستراتیجیة علی تقنیات إحصائیة متطورة (أو معقدة) أو تعلم آلي یصعب فھمھا وتحتاج إلی الدکتوراه في الإحصاء لفھمھا؟ هل تقدم هذه التقنيات كمية كبيرة من المعلمات، مما قد يؤدي إلى التحيز الأمثل؟ هل من المرجح أن تتحمل الاستراتيجية تغيير النظام (أي تنظيم جديد محتمل للأسواق المالية)؟ نسبة شارب - نسبة شارب يصف نظريا نسبة المكافأة / المخاطر للاستراتيجية. وهو يحدد كم من العائدات التي يمكن تحقيقها لمستوى التقلبات التي يتحملها منحنى الأسهم. وبطبيعة الحال، نحتاج إلى تحديد الفترة والتردد الذي تقاس فيه هذه العوائد والتقلب (أي الانحراف المعياري). وتتطلب استراتيجية التردد الأعلى معدل أخذ عينات أكبر من الانحراف المعياري، ولكن فترة زمنية عامة أقصر للقياس، على سبيل المثال. الرافعة المالية - هل تتطلب الاستراتيجية نفوذا كبيرا لكي تكون مربحة؟ هل تتطلب الاستراتيجية استخدام عقود المشتقات المالية (العقود الآجلة والخيارات والمقايضات) من أجل تحقيق العائد؟ يمكن أن يكون لهذه العقود المديونية خصائص التقلب الثقيلة، وبالتالي يمكن أن يؤدي بسهولة إلى المكالمات الهامش. هل لديك رأس المال التجاري ومزاجه لمثل هذا التقلب؟ التردد - يرتبط تواتر الاستراتيجية ارتباطا وثيقا بمكدس التكنولوجيا (وبالتالي الخبرة التقنية) ونسبة شارب والمستوى العام لتكاليف المعاملات. جميع القضايا الأخرى التي تعتبرها، تتطلب استراتيجيات التردد العالي المزيد من رأس المال، وأكثر تطورا وأصعب لتنفيذ. ومع ذلك، على افتراض محرك باكتستينغ الخاص بك هو متطور وخالية من الأخطاء، فإنها غالبا ما يكون لها نسب شارب أعلى بكثير. التقلب - يرتبط التقلب بقوة ب "مخاطر" الاستراتيجية. نسبة شارب تميز هذا. وغالبا ما يؤدي التقلب األعلى لفئات األصول األساسية، إن لم يتم التحوط، إلى تقلبات أعلى في منحنى األسهم وبالتالي نسب أصغر من شارب. وأنا أفترض بالطبع أن التقلبات الإيجابية تساوي تقريبا التقلبات السلبية. قد يكون لبعض الاستراتيجيات تقلبات هبوطية أكبر. يجب أن تكون على علم بهذه السمات. Win/Loss, Average Profit/Loss - Strategies will differ in their win/loss and average profit/loss characteristics. One can have a very profitable strategy, even if the number of losing trades exceed the number of winning trades. Momentum strategies tend to have this pattern as they rely on a small number of "big hits" in order to be profitable. Mean-reversion strategies tend to have opposing profiles where more of the trades are "winners", but the losing trades can be quite severe. Maximum Drawdown - The maximum drawdown is the largest overall peak-to-trough percentage drop on the equity curve of the strategy. Momentum strategies are well known to suffer from periods of extended drawdowns (due to a string of many incremental losing trades). Many traders will give up in periods of extended drawdown, even if historical testing has suggested this is "business as usual" for the strategy. You will need to determine what percentage of drawdown (and over what time period) you can accept before you cease trading your strategy. This is a highly personal decision and thus must be considered carefully. Capacity/Liquidity - At the retail level, unless you are trading in a highly illiquid instrument (like a small-cap stock), you will not have to concern yourself greatly with strategy capacity . Capacity determines the scalability of the strategy to further capital. Many of the larger hedge funds suffer from significant capacity problems as their strategies increase in capital allocation. Parameters - Certain strategies (especially those found in the machine learning community) require a large quantity of parameters. Every extra parameter that a strategy requires leaves it more vulnerable to optimisation bias (also known as "curve-fitting"). You should try and target strategies with as few parameters as possible or make sure you have sufficient quantities of data with which to test your strategies on. Benchmark - Nearly all strategies (unless characterised as "absolute return") are measured against some performance benchmark. The benchmark is usually an index that characterises a large sample of the underlying asset class that the strategy trades in. If the strategy trades large-cap US equities, then the S&P500 would be a natural benchmark to measure your strategy against. You will hear the terms "alpha" and "beta", applied to strategies of this type. We will discuss these coefficients in depth in later articles.


Notice that we have not discussed the actual returns of the strategy. Why is this? In isolation, the returns actually provide us with limited information as to the effectiveness of the strategy. They don't give you an insight into leverage, volatility, benchmarks or capital requirements. Thus strategies are rarely judged on their returns alone. Always consider the risk attributes of a strategy before looking at the returns.


At this stage many of the strategies found from your pipeline will be rejected out of hand, since they won't meet your capital requirements, leverage constraints, maximum drawdown tolerance or volatility preferences. The strategies that do remain can now be considered for backtesting . However, before this is possible, it is necessary to consider one final rejection criteria - that of available historical data on which to test these strategies.


Obtaining Historical Data.


Nowadays, the breadth of the technical requirements across asset classes for historical data storage is substantial. In order to remain competitive, both the buy-side (funds) and sell-side (investment banks) invest heavily in their technical infrastructure. It is imperative to consider its importance. In particular, we are interested in timeliness, accuracy and storage requirements. I will now outline the basics of obtaining historical data and how to store it. Unfortunately this is a very deep and technical topic, so I won't be able to say everything in this article. However, I will be writing a lot more about this in the future as my prior industry experience in the financial industry was chiefly concerned with financial data acquisition, storage and access.


In the previous section we had set up a strategy pipeline that allowed us to reject certain strategies based on our own personal rejection criteria. In this section we will filter more strategies based on our own preferences for obtaining historical data. The chief considerations (especially at retail practitioner level) are the costs of the data, the storage requirements and your level of technical expertise. We also need to discuss the different types of available data and the different considerations that each type of data will impose on us.


Let's begin by discussing the types of data available and the key issues we will need to think about:


Fundamental Data - This includes data about macroeconomic trends, such as interest rates, inflation figures, corporate actions (dividends, stock-splits), SEC filings, corporate accounts, earnings figures, crop reports, meteorological data etc. This data is often used to value companies or other assets on a fundamental basis, i. e. via some means of expected future cash flows. It does not include stock price series. Some fundamental data is freely available from government websites. Other long-term historical fundamental data can be extremely expensive. Storage requirements are often not particularly large, unless thousands of companies are being studied at once. News Data - News data is often qualitative in nature. It consists of articles, blog posts, microblog posts ("tweets") and editorial. Machine learning techniques such as classifiers are often used to interpret sentiment . This data is also often freely available or cheap, via subscription to media outlets. The newer "NoSQL" document storage databases are designed to store this type of unstructured, qualitative data. Asset Price Data - This is the traditional data domain of the quant. It consists of time series of asset prices. Equities (stocks), fixed income products (bonds), commodities and foreign exchange prices all sit within this class. Daily historical data is often straightforward to obtain for the simpler asset classes, such as equities. However, once accuracy and cleanliness are included and statistical biases removed, the data can become expensive. In addition, time series data often possesses significant storage requirements especially when intraday data is considered. Financial Instruments - Equities, bonds, futures and the more exotic derivative options have very different characteristics and parameters. Thus there is no "one size fits all" database structure that can accommodate them. Significant care must be given to the design and implementation of database structures for various financial instruments. We will discuss the situation at length when we come to build a securities master database in future articles. Frequency - The higher the frequency of the data, the greater the costs and storage requirements. For low-frequency strategies, daily data is often sufficient. For high frequency strategies, it might be necessary to obtain tick-level data and even historical copies of particular trading exchange order book data. Implementing a storage engine for this type of data is very technologically intensive and only suitable for those with a strong programming/technical background. Benchmarks - The strategies described above will often be compared to a benchmark . This usually manifests itself as an additional financial time series. For equities, this is often a national stock benchmark, such as the S&P500 index (US) or FTSE100 (UK). For a fixed income fund, it is useful to compare against a basket of bonds or fixed income products. The "risk-free rate" (i. e. appropriate interest rate) is also another widely accepted benchmark. All asset class categories possess a favoured benchmark, so it will be necessary to research this based on your particular strategy, if you wish to gain interest in your strategy externally. Technology - The technology stacks behind a financial data storage centre are complex. This article can only scratch the surface about what is involved in building one. However, it does centre around a database engine, such as a Relational Database Management System (RDBMS), such as MySQL, SQL Server, Oracle or a Document Storage Engine (i. e. "NoSQL"). This is accessed via "business logic" application code that queries the database and provides access to external tools, such as MATLAB, R or Excel. Often this business logic is written in C++, C#, Java or Python. You will also need to host this data somewhere, either on your own personal computer, or remotely via internet servers. Products such as Amazon Web Services have made this simpler and cheaper in recent years, but it will still require significant technical expertise to achieve in a robust manner.


As can be seen, once a strategy has been identified via the pipeline it will be necessary to evaluate the availability, costs, complexity and implementation details of a particular set of historical data. You may find it is necessary to reject a strategy based solely on historical data considerations. This is a big area and teams of PhDs work at large funds making sure pricing is accurate and timely. Do not underestimate the difficulties of creating a robust data centre for your backtesting purposes!


I do want to say, however, that many backtesting platforms can provide this data for you automatically - at a cost. Thus it will take much of the implementation pain away from you, and you can concentrate purely on strategy implementation and optimisation. Tools like TradeStation possess this capability. However, my personal view is to implement as much as possible internally and avoid outsourcing parts of the stack to software vendors. I prefer higher frequency strategies due to their more attractive Sharpe ratios, but they are often tightly coupled to the technology stack, where advanced optimisation is critical.


Now that we have discussed the issues surrounding historical data it is time to begin implementing our strategies in a backtesting engine. This will be the subject of other articles, as it is an equally large area of discussion!


Just Getting Started with Quantitative Trading?


3 Reasons to Subscribe to the QuantStart Email List:


1. Quant Trading Lessons.


You'll get instant access to a free 10-part email course packed with hints and tips to help you get started in quantitative trading!


2. All The Latest Content.


Every week I'll send you a wrap of all activity on QuantStart so you'll never miss a post again.


Real, actionable quant trading tips with no nonsense.


أساسيات التداول الخوارزمي: المفاهيم والأمثلة.


الخوارزمية هي مجموعة محددة من التعليمات المحددة بوضوح تهدف إلى تنفيذ مهمة أو عملية.


التداول الحسابي (التداول الآلي، التداول في الصندوق الأسود، أو ببساطة التداول ألغو) هو عملية استخدام أجهزة الكمبيوتر المبرمجة لمتابعة مجموعة محددة من التعليمات لوضع التجارة من أجل توليد الأرباح بسرعة وتردد يستحيل على تاجر الإنسان. وتستند مجموعات القواعد المحددة إلى التوقيت أو السعر أو الكمية أو أي نموذج رياضي. وبصرف النظر عن فرص الربح للتاجر، ألغو التداول يجعل الأسواق أكثر سيولة ويجعل التداول أكثر منهجية من خلال استبعاد الآثار البشرية العاطفية على الأنشطة التجارية. (لمزيد من المعلومات، اطلع على اختيار برامج التداول الخوارزمية الصحيحة.)


لنفترض أن المتداول يتبع هذه المعايير التجارية البسيطة:


شراء 50 سهم من الأسهم عندما يكون المتوسط ​​المتحرك لمدة 50 يوما فوق المتوسط ​​المتحرك ل 200 يوم بيع أسهم السهم عندما يقل المتوسط ​​المتحرك ل 50 يوم عن المتوسط ​​المتحرك ل 200 يوم.


وباستخدام هذه المجموعة من تعليمين بسيطين، من السهل كتابة برنامج حاسوبي يقوم برصد سعر السهم تلقائيا (ومؤشرات المتوسط ​​المتحرك) ووضع أوامر الشراء والبيع عند استيفاء الشروط المحددة. التاجر لم يعد يحتاج إلى الحفاظ على مشاهدة للأسعار الحية والرسوم البيانية، أو وضعت في أوامر يدويا. نظام التداول الخوارزمية تلقائيا يفعل ذلك بالنسبة له، عن طريق تحديد بشكل صحيح فرصة التداول. (لمزيد من المعلومات عن المتوسطات المتحركة، اطلع على المتوسطات المتحركة البسيطة التي تجعل المؤشرات تتوقف.)


[إذا كنت ترغب في معرفة المزيد عن ثبت وإلى الاستراتيجيات نقطة التي يمكن في نهاية المطاف أن يعمل في نظام التداول حسابي، تحقق من إنفستوبيديا أكاديمية تصبح دورة اليوم التاجر. ]


فوائد التداول الخوارزمي.


ألغو التداول يوفر الفوائد التالية:


الصفقات التي يتم تنفيذها بأفضل الأسعار الممكنة وضع أمر تجاري فوري ودقيق (وبالتالي فرص عالية للتنفيذ على المستويات المطلوبة) توقيت الصفقات بشكل صحيح وعلى الفور، لتجنب التغيرات الكبيرة في الأسعار خفض تكاليف المعاملات (انظر مثال على نقص التنفيذ أدناه) الشيكات التلقائية في وقت واحد على عدة ظروف السوق تقليل مخاطر الأخطاء اليدوية في وضع الصفقات باكتست الخوارزمية، استنادا إلى البيانات المتاحة الوقت الحقيقي والحقيقي انخفاض احتمال الأخطاء من قبل التجار البشري على أساس العوامل العاطفية والنفسية.


إن الجزء الأكبر من التداول الحالي هو تداول عالي التردد (هفت)، والذي يحاول الاستفادة من وضع عدد كبير من الطلبات بسرعة عالية جدا عبر أسواق متعددة ومعلمات قرار متعددة، بناء على تعليمات مبرمجة مسبقا. (لمزيد من المعلومات حول التداول عالي التردد، راجع استراتيجيات وأسرار شركات التداول عالي التردد).


يستخدم ألغو-ترادينغ في العديد من أشكال الأنشطة التجارية والاستثمارية، بما في ذلك:


المستثمرون على المدى المتوسط ​​إلى الطويل أو شركات شراء (صناديق المعاشات التقاعدية وصناديق الاستثمار وشركات التأمين) الذين يشترون في الأسهم بكميات كبيرة ولكنهم لا يريدون التأثير على أسعار الأسهم مع استثمارات منفصلة وكبيرة الحجم. ويستفيد المتداولون على المدى القصير والمشتركون من جانب البيع (صناع السوق والمضاربون والمراجحون) من تنفيذ التجارة الآلي؛ بالإضافة إلى ذلك، المساعدات التجارية ألغو في خلق السيولة الكافية للبائعين في السوق. التجار المنتظمين (أتباع الاتجاه، أزواج التجار، صناديق التحوط، الخ) تجد أنها أكثر كفاءة بكثير لبرمجة قواعد التداول الخاصة بهم والسماح للتجارة البرنامج تلقائيا.


يوفر التداول الخوارزمي نهجا أكثر انتظاما للتداول النشط من الطرق القائمة على الحدس أو الغريزة للتاجر البشري.


استراتيجيات التداول الخوارزمية.


وتتطلب أي استراتيجية للتداول الخوارزمي فرصة محددة تكون مربحة من حيث تحسين الأرباح أو خفض التكاليف. وفيما يلي استراتيجيات التداول الشائعة المستخدمة في تجارة ألغو:


استراتيجيات التداول الأكثر خوارزمية تتبع الاتجاهات في المتوسطات المتحركة، هروب القناة، حركات مستوى الأسعار والمؤشرات الفنية ذات الصلة. هذه هي أسهل وأبسط الاستراتيجيات لتنفيذ من خلال التداول حسابي لأن هذه الاستراتيجيات لا تنطوي على اتخاذ أي توقعات أو توقعات الأسعار. وتبدأ الصفقات على أساس حدوث الاتجاهات المستصوبة، التي تكون سهلة ومباشرة لتنفيذها من خلال الخوارزميات دون الدخول في تعقيد التحليل التنبئي. المثال المذكور أعلاه للمتوسط ​​المتحرك 50 و 200 يوم هو الاتجاه الشعبي التالي استراتيجية. (لمزيد من المعلومات حول استراتيجيات التداول الاتجاه، انظر: استراتيجيات بسيطة للاستفادة من الاتجاهات.)


شراء الأسهم المدرجة المزدوجة بسعر أقل في سوق واحد وبيعها في وقت واحد بسعر أعلى في سوق أخرى تقدم فرق السعر كخالية من الأرباح أو المراجحة. ويمكن تكرار نفس العملية بالنسبة للأسهم مقابل أدوات العقود الآجلة، حيث أن فروق الأسعار موجودة من وقت لآخر. تطبيق خوارزمية لتحديد مثل هذه الفروق السعرية ووضع أوامر يسمح فرص مربحة بطريقة فعالة.


وقد حددت صناديق المؤشرات فترات من إعادة التوازن لجعل حيازاتها متساوية مع مؤشراتها المرجعية. وهذا يخلق فرصا مربحة للمتداولين الخوارزميين الذين يستفيدون من الصفقات المتوقعة التي تقدم أرباح تتراوح بين 20 و 80 نقطة أساس اعتمادا على عدد الأسهم في صندوق المؤشرات، قبيل إعادة التوازن في مؤشر المؤشرات. يتم بدء هذه الصفقات عن طريق أنظمة التداول الحسابية للتنفيذ في الوقت المناسب وأفضل الأسعار.


وهناك الكثير من النماذج الرياضية المثبتة، مثل استراتيجية التداول دلتا المحايدة، والتي تسمح التداول على مجموعة من الخيارات والأمن الكامنة فيها، حيث يتم وضع الصفقات لتعويض الدلتا الإيجابية والسلبية بحيث يتم الحفاظ على دلتا محفظة في الصفر.


وتستند استراتيجية معدل العائد على فكرة أن الأسعار المرتفعة والمنخفضة للأصل هي ظاهرة مؤقتة تعود إلى قيمتها المتوسطة بشكل دوري. تحديد وتحديد النطاق السعري وتطبيق الخوارزمية بناء على ما يسمح بتداول الصفقات تلقائيا عندما يكسر سعر الأصول من النطاق المحدد.


استراتيجية السعر المتوسط ​​المرجح لحجم الأسهم تفصل أمر كبير وتنشر قطع أصغر حجما من الترتيب إلى السوق باستخدام ملفات تعريف حجم المخزون التاريخية المحددة. والهدف من ذلك هو تنفيذ الأمر بالقرب من متوسط ​​السعر المرجح (فواب)، وبالتالي الاستفادة من متوسط ​​السعر.


وتؤدي استراتيجية متوسط ​​السعر المرجح للوقت إلى تفكيك أمر كبير وتنشر قطع أصغر حجما من النظام إلى السوق باستخدام فترات زمنية مقسمة بالتساوي بين بداية ونهاية الوقت. والهدف من ذلك هو تنفيذ أمر قريب من متوسط ​​السعر بين بداية ونهاية الوقت، وبالتالي تقليل تأثير السوق.


حتى يتم ملء النظام التجاري بالكامل، تستمر هذه الخوارزمية في إرسال أوامر جزئية، وفقا لنسبة المشاركة المحددة وحسب حجم التداول في الأسواق. وترسل "ستيبس ستراتيغي" ذات الصلة الطلبات بناء على النسبة المئوية المحددة من قبل المستخدم من أحجام السوق وتزيد أو تنقص من معدل المشاركة هذا عندما يصل سعر السهم إلى مستويات معرفة من قبل المستخدم.


وتهدف استراتيجية العجز في التنفيذ إلى التقليل من تكلفة تنفيذ أمر الشراء عن طريق التداول في السوق في الوقت الحقيقي، وبالتالي توفير تكلفة الطلب والاستفادة من تكلفة الفرصة البديلة للتأخير في التنفيذ. وستؤدي الاستراتيجية إلى زيادة معدل المشاركة المستهدف عندما يتحرك سعر السهم إيجابيا ويقلله عندما يتحرك سعر السهم سلبا.


هناك عدد قليل من فئات خاصة من الخوارزميات التي تحاول التعرف على "الأحداث" على الجانب الآخر. هذه "خوارزميات الاستنشاق"، المستخدمة، على سبيل المثال، من قبل صانع السوق الجانب بيع لديها المخابرات في الداخل لتحديد وجود أي خوارزميات على الجانب شراء من أجل كبير. هذا الكشف من خلال خوارزميات سوف يساعد صانع السوق تحديد فرص النظام كبيرة وتمكنه من الاستفادة من خلال ملء أوامر بسعر أعلى. يتم تحديد هذا في بعض الأحيان على أنها التكنولوجيا الفائقة الأمامية. (لمزيد من المعلومات حول التداول عالي التردد والممارسات الاحتيالية، راجع: إذا اشتريت الأسهم عبر الإنترنت، فأنت تشارك في هفت.)


المتطلبات الفنية للتجارة الخوارزمية.


تنفيذ الخوارزمية باستخدام برنامج الكمبيوتر هو الجزء الأخير، نادب مع باكتستينغ. ويتمثل التحدي في تحويل الاستراتيجية التي تم تحديدها إلى عملية محوسبة متكاملة لها إمكانية الوصول إلى حساب تداول لوضع الأوامر. ويلزم ما يلي:


المعرفة البرمجة الحاسوبية لبرمجة استراتيجية التداول المطلوبة والمبرمجين استأجرت أو برامج التداول مسبقة الصنع شبكة الاتصال والوصول إلى منصات التداول لوضع أوامر الوصول إلى تغذية البيانات السوق التي سيتم رصدها من قبل خوارزمية للحصول على فرص لوضع أوامر القدرة والبنية التحتية من أجل إعادة النظر في النظام الذي تم بناؤه قبل بدء تشغيله في الأسواق الحقيقية. توفر البيانات التاريخية للاختبار المسبق، تبعا لتعقيد القواعد المطبقة في الخوارزمية.


وفيما يلي مثال شامل: رويال داتش شل (رديز) مدرج في بورصة أمستردام (إكس) وبورصة لندن (لس). دعونا نبني خوارزمية لتحديد فرص المراجحة. وفيما يلي بعض الملاحظات المثيرة للاهتمام:


تداول الفوركس باليورو، في حين يتداول سوق لندن للأوراق المالية بالجنيه الإسترليني بسبب فارق التوقيت لمدة ساعة واحدة، يفتح إكس قبل ساعة من بورصة لندن، يليه التداولان في وقت واحد للساعات القليلة القادمة ثم يتداولان فقط في بورصة لندن خلال الساعة الأخيرة عند إغلاق إكس .


هل يمكننا أن نستكشف إمكانية التداول بالمراجحة على أسهم شركة رويال داتش شل المدرجة في هذين السوقين بعملتين مختلفتين؟


برنامج حاسوبي يمكنه قراءة أسعار السوق الحالية السعر يغذي من كل من لس و إكس إكس تغذية سعر صرف العملات الأجنبية مقابل سعر صرف غبب-ور القدرة على وضع الأمر الذي يمكن أن توجه النظام إلى الصرف الصحيح القدرة على الاختبار السابق على الأعلاف السعر التاريخية.


يجب أن يقوم برنامج الكمبيوتر بما يلي:


قراءة تغذية الأسعار الواردة من أسهم رديز من كلا التبادل باستخدام أسعار الصرف الأجنبي المتاحة، وتحويل سعر عملة واحدة إلى أخرى إذا كان هناك اختلاف كبير بما فيه الكفاية السعر (خصم تكاليف الوساطة) مما يؤدي إلى فرصة مربحة، ثم وضع شراء ترتيب على سعر صرف أقل وبيع النظام على ارتفاع سعر الصرف إذا تم تنفيذ أوامر كما هو مطلوب، فإن الأرباح التحكيم تتبع.


بسيطة وسهلة! ومع ذلك، فإن ممارسة التداول الخوارزمية ليست بهذه البساطة للحفاظ على وتنفيذ. تذكر، إذا كنت يمكن أن تضع التجارة ألغو ولدت، لذلك يمكن للمشاركين في السوق الأخرى. وبالتالي، تتقلب الأسعار في الملي ثانية وحتى الميكروثانية. في المثال أعلاه، ماذا يحدث إذا تم تنفيذ صفقة الشراء، ولكن تجارة البيع لا تتغير مع تغير أسعار البيع في الوقت الذي يصل فيه طلبك إلى السوق؟ سوف ينتهي بك الأمر يجلس مع موقف مفتوح، مما يجعل استراتيجية المراجحة الخاص بك لا قيمة له.


هناك مخاطر وتحديات إضافية: على سبيل المثال، مخاطر فشل النظام، وأخطاء الاتصال بالشبكة، والفترات الزمنية بين أوامر التجارة والتنفيذ، والأهم من ذلك كله، الخوارزميات الناقصة. وكلما كانت الخوارزمية الأكثر تعقيدا، فإن الأمر يحتاج إلى مزيد من الاختبار المسبق الأكثر صرامة قبل وضعها موضع التنفيذ.


الخط السفلي.


التحليل الكمي لأداء الخوارزمية يلعب دورا هاما ويجب دراسته بشكل نقدي. انها مثيرة للذهاب لأتمتة بمساعدة أجهزة الكمبيوتر مع فكرة لكسب المال دون عناء. ولكن يجب على المرء أن يتأكد من أن النظام يتم اختبارها بشكل كامل ويحدد الحدود المطلوبة. يجب على التجار التحليليين النظر في تعلم البرمجة ونظم البناء من تلقاء نفسها، ليكونوا واثقين من تنفيذ الاستراتيجيات الصحيحة بطريقة مضمونة. استخدام الحذر واختبار شامل من ألغو التداول يمكن أن تخلق فرص مربحة. (لمزيد من المعلومات، راجع كيفية كتابة روبوت ألغو التجاري الخاص بك.)


Algorithms (Algos)


Algorithmic trading and the Bridgewater Hedge Fund.


What are Algorithms (Algos)?


Algorithms (Algos) are a set of instructions that are introduced to carry out a specific task. Algorithms are introduced in trading to generate profits at a frequency impossible to a human trader. The process is referred to as algorithmic trading, and it sets rules based on pricing, quantity, timing and other mathematical models. Other variations of algorithmic trading include automated trading and black-box trading.


Algorithmic trading rules out the human (emotional) impact on trading activities. The use of sophisticated algorithms is common among institutional investors like investment banks, pension funds and hedge funds due to the large volumes of shares that they trade daily. This allows them to get the best possible price at minimal costs and without significantly affecting the stock price.


استراتيجيات التداول الخوارزمية.


Any good strategy for algorithm trading must aim to improve trading revenues and cut costs of trading. The most popular strategies are arbitrage, index fund rebalancing, mean reversion and market timing. Other strategies are scalping, transaction cost reduction and pairs trading.`


Index Fund Rebalancing.


The index funds of mutual funds like individual retirement accounts and pension funds are regularly adjusted to reflect the new prices of the fund’s underlying assets. The “rebalancing” creates opportunities for algorithmic traders who capitalize on the expected trades depending on the number of stocks in the index fund. The trades are performed by algorithmic trading systems to allow for best prices, low costs and timely results.


Algos and Arbitrage.


Arbitrage is the practice of taking advantage of the market price difference between two different entities. Buying a dual-listed stock at a lower price in one market and selling it at a higher price in another market offers a risk-free profit or arbitrage. The practice can be applied in the S&P futures and S&P 500 stocks since it is common for both stocks to develop price differences. When it occurs, the securities trading on NASDAQ and NYSE either get ahead or lag behind the S&P futures traded in CME market, creating an opportunity for arbitrage.


For arbitrage to occur, it must meet three conditions. First, the same assets should not trade at the same price on all markets. Second, two assets with the same cash flows should not trade at the same price. Lastly, an asset with a known price in the future should not trade today at the future price, discounted at the risk-free interest rate. Arbitrage is only possible with securities and financial products trading electronically. Also, the transactions should occur simultaneously to minimize the exposure to market risk or the probability that the price of one market may change before both transactions are complete.


Mean Reversion.


Mean reversion is a mathematical method used in stock investing, and it computes the average of the stocks temporary high and low prices. It involves identifying the trading range for stocks and calculating its average price using analytical techniques. When the current market price lags behind the average price, the stock is considered attractive, with the hope that the price will increase. On the other hand, when the current market prices go beyond the average price, the stocks are undesirable, and investors expect the price to fall. The standard deviation of the stock’s recent prices is often used as a buy or sell indicator. Trading around mean reversion is a common use of algos.


Market Timing.


Strategies that are designed to generate alpha are considered market timing strategies, and they use a method that includes live testing, backtesting, and forward testing. Backtesting is the first stage of market timing, and it involves simulating hypothetical trades through an in-sample data period. The next step is to perform optimization to get the most optimal results. The second stage of market timing is forward testing, and it involves running the algorithms throughout of sample data to ensure it performs within the backtested expectations. The last stage is live testing, and it requires a developer to compare live trades with the backtested and forward tested models.


فوائد التداول الخوارزمي.


There are various advantages of allowing a computer to monitor and execute the live trades. One of the benefits of algorithm trading is the ability to minimize emotions throughout the trading process since trades are limited to a set of predefined instructions. Human trading is susceptible to emotions like fear and greed that may lead to poor decision-making. Through automated trading, traders have an easy time sticking to the plan. Automating the process also helps curb overtrading where some traders may buy and sell at every opportunity they get, reducing chances of human-induced errors.


Trading with algorithms (Algos) also helps achieve consistency. The biggest challenge in the trading process is planning the trade and trading the plan. Failure to follow all the rules is likely to alter any chances a trader has, even if the trading plan has the potential to be profitable. Although losses are part of trading, human traders may get discouraged after incurring two or more consecutive losses and fail to move to the next trade. By falling out midday of the process, the trader destroys any chances of winning in other rounds of trade. Automated trading helps to achieve consistency, trade according to the plan and increases chances of winning.


In trading, every second counts and the speed of algorithmic trading makes it a favorable option for stock investing. Computers respond immediately to changing market conditions and can help generate orders as soon as the criteria are met. Also, getting out or in too early or late can make a great difference in the day’s trading and automating the process helps cure the human-prone mistakes.


Disadvantages of Algorithmic Trading.


Just like other mechanical processes, algorithmic trading is a sophisticated process, and it is prone to failures. Internet connectivity issues, power losses, and computer crashes can result in errant orders, duplicate orders and even missing orders that might not be sent to the market. Also, there could be a difference between the trades generated by the trading strategy and the actual results from the automated trading systems. Automated trading systems should be monitored at all times to prevent mechanical failures.


Traders who use backtesting techniques to optimize their systems may create systems that look good on paper but fail to perform in a live market. The problem may occur due to over-optimization, where traders create an excessive curve-fitting that produces a trading plan that is unreliable in live markets. Some traders assume that a trading plan should have 100 percent profitable trades, without allowing room for drawdowns.


The Bridgewater Hedge Fund.


Bridgewater Associates is the largest hedge fund in the world, with over $160 billion in assets under management. From a humble beginning, founder Ray Dalio nearly liquidated the firm after wrongly predicting a downturn in 1982. Instead, the economy went the opposite way for a strongly bullish upswing. This failure, however, forced Ray Dalio to re-evaluate his thinking. From these events, he eventually developed the Pure Alpha fund strategy, which is largely an algo fund and is one of the main contributors to Bridgewater’s success. In fact, this strategy has worked so successfully that Dalio is now talking about developing an AI to run the company purely based off of the algorithmic methodologies inherent to Pure Alpha.

Comments

Popular Posts